Robust fault estimation of uncertain systems using an LMI-based approach

نویسندگان

  • Euripedes G. Nobrega
  • Musa O. Abdalla
  • Karolos M. Grigoriadis
چکیده

General recent techniques in fault detection and isolation (FDI) are based on H∞ optimization methods to address the issue of robustness in the presence of disturbances, uncertainties and modeling errors. Recently developed linear matrix inequality (LMI) optimization methods are currently used to design controllers and filters, which present several advantages over the Riccati equation-based design methods. This article presents an LMI formulation to design full-order and reduced-order robust H∞ FDI filters to estimate the faulty input signals in the presence of uncertainty and model errors. Several cases are examined for nominal and uncertain plants, which consider a weight function for the disturbance and a reference model for the faults. The FDI LMI synthesis conditions are obtained based on the bounded real lemma for the nominal case and on a sufficient extension for the uncertain case. The conditions for the existence of a feasible solution form a convex problem for the full-order filter, which may be solved via recently developed LMI optimization techniques. For the reduced-order FDI filter, the inequalities include a non-convex constraint, and an alternating projections method is presented to address this case. The examples presented in this paper compare the simulated results of a structural model for the nominal and uncertain cases and show that a degree of conservatism exists in the robust fault estimation; however, more reliable solutions are achieved than the nominal design. Copyright q 2008 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint

In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...

متن کامل

Robust H_∞ Controller design based on Generalized Dynamic Observer for Uncertain Singular system with Disturbance

This paper presents a robust ∞_H controller design, based on a generalized dynamic observer for uncertain singular systems in the presence of disturbance. The controller guarantees that the closed loop system be admissible. The main advantage of this method is that the uncertainty can be found in the system, the input and the output matrices. Also the generalized dynamic observer is used to est...

متن کامل

A Robust Adaptive Observer-Based Time Varying Fault Estimation

This paper presents a new observer design methodology for a time varying actuator fault estimation. A new linear matrix inequality (LMI) design algorithm is developed to tackle the limitations (e.g. equality constraint and robustness problems) of the well known so called fast adaptive fault estimation observer (FAFE). The FAFE is capable of estimating a wide range of time-varying actuator fault...

متن کامل

Sensor Fault Detection for a class of Uncertain Nonlinear Systems Using ‎Sliding Mode Observers

This paper deals with the issues of sensor fault detection for a class of Lipschitz uncertain nonlinear system. By definition coordinate transformation matrix for system states and output system, at first the original system divided into two subsystems. the first subsystem includes uncertainties but without any sensor faults and the second subsystem has sensor faults but is free of uncertaintie...

متن کامل

ROBUST $H_{infty}$ CONTROL FOR T–S TIME-VARYING DELAY SYSTEMS WITH NORM BOUNDED UNCERTAINTY BASED ON LMI APPROACH

In this paper we consider the problem of delay-dependent robustH1 control for uncertain fuzzy systems with time-varying delay. The Takagi–Sugeno (T–S) fuzzy model is used to describe such systems. Time-delay isassumed to have lower and upper bounds. Based on the Lyapunov-Krasovskiifunctional method, a sufficient condition for the existence of a robust $H_{infty}$controller is obtained. The fuzz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008